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The steady, two-dimensional, incompressible flow past a circular cylinder is 
calculated for Reynolds numbers up to ten. An accurate description of the flow 
field is found by employing the semi-analytical method of series truncation to 
reduce the governing partial differential equations of motion to a system of 
ordinary differential equations which can be integrated numerically. Results are 
given for Reynolds numbers between 0.4 and 10.0 (based on diameter). The 
Reynolds number at  which separation first occurs behind the cylinder is found 
to be 5.75. Over the entire Reynolds number range investigated, characteristic 
flow parameters such as the drag coefficient, pressure coefficient, standing eddy 
length, and streamline pattern compare favourably with available experimental 
data and numerical solution results. 

1. Introduction 
For more than a century, the circular cylinder has held a prominent place in 

the study of viscous, incompressible flow at low and moderate Reynolds numbers 
(i.e. Reynolds numbers of order 10 or smaller). The first theoretical treatment 
of the problem was given by Stokes, who could find no steady flow satisfying his 
linearized governing equations. This was the famous Stokes’ paradox; and it 
remained unresolved until Oseen explained that the failure resulted from neglect 
of the non-linear inertia terms, which become dominant far from the body. 
Hence, as a remedy he suggested alternative linearized equations that partially 
account for the inertia terms. Soon thereafter, Lamb (191 1)  gave a solution of 
Oseen’s equations for the circular cylinder which employed an approximate 
boundary condition at  the body surface. This work was extended by Tomotika & 
Aoi (1950), who obtained solutions to the full Oseen equations for arbitrary 
Reynolds number; however, Yamada (1954) pointed out serious numerical 
inaccuracies in these solutions. 

The solutions to Oseen’s equations present a uniformly valid first approxima- 
tion to the flow about a circular cylinder at  low Reynolds number. Independently 
and nearly simultaneously, Kaplun (1957) and Proudman & Pearson (1957) 
generated a procedure to calculate higher approximations by matching two 
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asymptotic expansions valid, respectively, near to and far from the body. The 
results, though, are of limited utility for all except very small Reynolds numbers. 

‘Intermediately small ’ Reynolds numbers are those beyond the range of 
validity of the above approximations, but still smaller than those for which the 
viscous forces are in some sense negligible. For such Reynolds numbers analytical 
work has met extreme difficulty, so that knowledge of the resultant flows has been 
obtained almost exclusively either by experiment or by numerical integration of 
the complete governing equations of motion. Various experimental measure- 
ments of the drag coefficient at moderate Reynolds number have been made, 
those of Tritton (1959) having been the most extensive and careful. Another 
set of valuable experiments was performed by Taneda (1956), who photographed 
the flow past cylinders a t  moderate Reynolds numbers, thereby observing the 
Reynolds number above which separation occurs and the length of the standing 
vortices behind the cylinder for larger Reynolds numbers. 

Previous numerical solutions of the full Navier-Stokes equations for specific 
low and moderate Reynolds numbers include solutions for Reynolds numbers 
R = 10 and 20 (based on diameter) by Thom (1933), for R = 40 by Kawaguti 
( 1953), for R = 40 and 44 by Apelt (1961), and for R = 2,4,10, and 15 by Keller & 
Takami (1966, pp. 115-140). There are also the solutions of Allen & Southwell 
(1955) by relaxation methods for R = 0 (sic), 1, 10, 100, and 1000. Their results, 
however, are suspect, as pointed out by Kawaguti (1959). Finally, Kawaguti & 
Jain (1965) obtained steady-state solutions for R = 1, 10, 20, 30, 40, and 50 as 
the limit of solutions of the unsteady Navier-Stokes equations. 

The present semi-analytic solution to the full Navier-Stokes equations makes 
it possible to describe accurately the flow field about a circular cylinder over a 
wide range of Reynolds numbers without resorting either to full numerical 
solution or to experiment. While results are given for Reynolds numbers from 
order 10-1 to order 10, the method can be applied to both higher and lower 
Reynolds numbers without modification. Analysis proceeds employing the 
method of series truncation to reduce the governing partial differential equations 
of motion to a system of ordinary differential equations which can be integrated 
numerically, a simpler task than solving the original governing equations 
numerically. 

One other semi-analytic solution for the low Reynolds number flow past a 
circular cylinder is documented, namely that of Dennis & Shimshoni (1965). 
Their solution uses a somewhat different approach from the present solution, 
and the validity of their results is questionable. 

2. Analysis 
The problem under consideration here is that of the incompressible flow past 

a circular cylinder at moderate Reynolds number. The flow is assumed to be 
steady and two-dimensional, with uniform free-stream velocity U,. The viscosity 
,u is also assumed constant. The constant fluid density is denoted by p. For a 
circular geometry the natural co-ordinates are cylindrical; the polar co-ordinate 
system employed, with the angle 0 measured from the upstream axis, is depicted 
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in figure 1. The fundamental length for the problem is the radius of the cylinder 
a, to which all lengths are referred. 

The physical flow variables are non-dimensionalized by reference to free- 
stream conditions. Hence, u and v are the velocity components along r and 8 
referred to U,, andp is the pressure referred to pUm2. 

FIGURE 1. Polar co-ordinate system. 

Flow equations and boundary conditions 

Under the assumptions of steady, laminar, incompressible flow the governing 
differential equations expressing conservation of mass and momentum in the 
polar co-ordinates of figure 1 are 

a av 
ar ae - ( ru)  +- = 0, 

where R is the Reynolds number defined with the diameter 2a of the circular 
cylinder as the characteristic length, i.e. 

R = (2pKna)/p. (4) 

It is possible to reduce the system of equations (I), (2) and (3) to a single 
equation by introducing the stream function $, defined such that 

Then the governing equation of motion becomes 

where 
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body surface : 
The boundary conditions result from the conditions of zero velocity at  the 

(9) 

(10) 

as r-fco, $ ( r , 8 )  N rsin8. (11) 

at r = 1, $(r,O) = 0, 

(a$/ar) (T ,  8) = 0 

and from the condition of uniform flow far upstream from the body: 

The single partial differential equation in $, (7), in conjunction with the 
boundary conditions, (9), (10) and (ll),  constitutes an exact, well-posed, 
mathematical description of the flow problem under consideration, 

Method of solution 

The problem is solved by application of the semi-analytic method of series 
truncation. This method has been used extensively in treatment of the hypersonic 
blunt-body problem by M. D. Van Dyke and his students at  Stanford University 
(see Van Dyke 1965). Also, Van Dyke (1964a, 1965) briefly considered the 
incompressible, viscous flow past a circular cylinder. A recent application is 
Davis’s (1967) investigation of the laminar incompressible flow past a semi- 
infinite flat plate. 

The method of series truncation is a successive approximation procedure 
which treats an elliptic partial differential equation as if it were parabolic or 
hyperbolic. The dependent variable is expanded in one co-ordinate, which plays 
the role of a time-like variable, and backward influence in the resultant system 
of ordinary differential equations is eliminated by series curtailment. 

A classic example of the utility of such a co-ordinate expansion for a parabolic 
problem is the Blasius series for the laminar boundary layer on a smooth, plane 
or axisymmetric body (Schlichting 1960, p. 146), where the stream function is 
formally expanded in powers of the longitudinal boundary-layer co-ordinate, 
with undetermined functions of the normal co-ordinate alone as coefficients. 
Substituting the Blasius series into the boundary -layer equation and equating 
like-order terms yields a coupled sequence of ordinary differential equations 
which can be successively integrated numerically. Such a procedure is successful, 
physically, because the boundary layer at a point is unaffected by the downstream 
flow so that there is no backward influence, and, mathematically, because the 
boundary-layer equations are parabolic. 

A basically analogous procedure is employed for the solution of an elliptic 
problem by the method of series truncation, with one notable discrepancy 
introduced by the effects of the ellipticity. Unlike parabolic and hyperbolic 
equations, elliptic equations characteristically display upstream or backward 
influence; hence, successive integration of the system of ordinary differential 
equations resulting from a co-ordinate expansion is not possible. Nonetheless, by 
making suitable approximating assumptions upon those terms indicating back- 
ward influence in the ordinary differential equations, an elliptic problem can be 
treated as a pseudo-hyperbolic or pseudo-parabolic problem. This is the crux of 
the method of series truncation. 
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Application to the present problem 
The stream function is formally expanded in a Fourier sine series 

$(r ,8)  =fl(r)sinB+f2(r)sin28+ ..., (12) 

with the functions fl ( T ) ,  f2 ( r ) , .  . . as yet unknown. Symmetry and antisymmetry 
of the velocity components u and v, respectively, indicate that the Fourier series 
is composed of sine terms alone. 

The usefulness of the form of the expansion for $ is affirmed by several con- 
siderations. That such a representation is efficacious near the surface of the body 
at low Reynolds number is clear from the Stokes approximation (see Van Dyke 
1964b,’p. lag), where the solution is an unknown multiple of the first term, and for- 
mal iteration adds a likewise unknown multiple of the second term. Furthermore, 
the first term is in accord with the boundary condition far upstream from the body. 

Expansion (12) is subsequently substituted into the governing partial differ- 
ential equation. Then collecting like Fourier coefficients yields a system of the 
following form: 

[T1(r,f1,f2,f3,...;a)lsin6+ [T2(r>f1,,f2,f3> “*;R)1sin28 

+T3sin38+T,sin48+ ... = 0, (13) 

where the (j = 1,2, ...) are non-linear ordinary differential expressions. Satis- 
faction of (1 3) for arbitrary 6 requires 

The subscript j is said to represent the jth-order problem. Hence, the first- 
order problem is governed by the ordinary differential equation Tl = 0, the 
second-order problem by T2 = 0, etc. The effects of ellipticity are readily visible 
here, since the problem of each order contains functions belonging to higher- 
order problems; on the other hand, as previously seen, parabolic and hyperbolic 
problems yield an independent first-order problem, and higher-order problems 
which can be solved entirely in terms of the problems of preceding orders. 

At this point, an apparent impasse has been reached. The problem of each 
order is indeterminate, possessing infinitely more unknowns than equations. It is 
possible, however, to circumvent the difficulty by arbitrarily setting the un- 
desirable functions equal to zero. Indeed, it is from this operation that the method 
of series truncation derives its name, since such a procedure is equivalent to 
successive truncation of series (12). In  this manner, the problem becomes solv- 
able, but only by the introduction of an approximation. The assumption that 
higher-order excess unknowns are zero is somewhat brutal, and it would be more 
refined to relate them in some manner to the lower-order terms. Kao (1964) 
pursued this reasoning with excellent results. Nonetheless, previous applications 
of the method have indicated that summary truncation produces good results 
as long as the form of the expansions for the dependent variables is chosen 
judiciously. 

For the actual solution by the method of series truncation the first truncation 
involves solving TI = 0 with f 2  = f3  = ... = 0 and appropriate boundary con- 
ditions, thereby yielding an approximate solution to the first-order problem. 
For the second truncation, the two equations Tl = 0 and T, = 0 are solved 

= 0 forj  = 1,2, . . . . 

7-2 
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simultaneously with f3  = f4 = ... = 0 and applicable boundary conditions. This 
gives approximate solutions to both the first- and second-order problems, now 
with non-zero f 2 .  Ensuing truncations are calculated in the same manner until 
satisfactory convergence between succeeding approximate solutions to the 
various-order problems is obtained. 

For the present problem five truncations have been calculated. The first trun- 
cation leads identically to the Stokes approximation and the associated non- 
uniformity at  infinity that prevents imposing the upstream boundary condition 
(see Van Dyke 1964b). This defect disappears in the higher truncations. 

The second truncation system of equations (Tl=  0 and T2 = 0 with 
f = f4 = . . . = 0 and applicable boundary conditions) is: 

2 9 9 R 1  1 2 2  
f 2 V + , f i  - r2 -7 + 5-3 - f + - 2r [-fi 2 (.y: +;f; - r2  -f' 1 +- r 3  f 1 ) ' 

f1P) =f;(1) = f 2 ( 1 )  =fL(l) = 09 (16)-(19) 

fl(r) w r  as r+m, (20) 

fi(r) = o( r )  as r-fco, (21) 

where primes denote differentiation with respect to r .  This system was solved 
by numerical integration. The method of numerical solution is described below. 

The third, fourth and fifth truncations were calculated by obvious extension 
of the previously described procedure. The corresponding systems of ordinary 
differential equations are given by Underwood (1968). 

Technique for numerical solution 

After a number of numerical schemes for the solution of non-linear two-point 
boundary-value problems (e.g. quasi-linearization) had been surveyed, it was 
decided that programming complexity, computer core storage, and machine run 
time could be optimized with a hybrid contrivance reflecting the basic character 
of the equations involved in the current truncation problems. The method 
finally selected was an iterative linearization procedure which can be illustrated 
by closer examination of the second truncation equations (14) and (15). These 
equations may be rewritten in the form: 

2 3 3 3  fp +if:' - r 2  - f " 1 + r 3  - f 1 ' - r4 - f 1 = P1 (r,fl, f 2 ;  R), 

(23) 
2 9 9  

#+-f':---f+- r2 2 r 3  f '  2 = F2(r,f l ;R) .  r 
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The left-hand sides of (22) and (23) are fourth-order, linear, ordinary differential 
expressions. If a prior estimate of the form of fi ( r )  and f2 ( r )  is used in evaluating 
Fl (r,,fl,f2; R) and F2 (r,,fl; R), there results a system of uncoupled, linear ordinary 
differential equations to solve. For each linear problem it is possible to find a 
particular solution and add to it a homogeneous solution (easily found analytic- 
ally) to meet the boundary conditions. The solutions to the linear problems are 
used to re-estimate E;(r;R) and F2(r;B),  and another solution to the linear 
system follows. Upon agreement between estimates of the right-hand sides of 
the equations and the ensuing solutions to the linearized problems, the desired 
profiles for fi ( r )  and f 2  ( r )  have been found. 

Particular solutions to the linearized equations were found using a fourth- 
order Runge-Kutta integration programme. In  obtaining converged profiles, 
the iteration procedure was found to be very sensitive to the initial profile 
approximations. Therefore, the estimated distribution fn ( r )  and the calculated 
value f, ( r )  were weighted to obtain a new estimated value fn (r)new for the next 

(24) 
iteration as follows: 

The weighting factor w was varied according to the relation 

w = KP,  (25) 

.fn (')new = fn ( r )  + W ( f n  ( r )  - f n  (TI). 

with the value of R increased by one after L iterations. L depended upon the 
truncation and the Reynolds number; the appropriate value was obtained from 
experience. The value of P also depended upon the truncation and the Reynolds 
number, with values between 0.1 and 0.01 being typical. The various fn(r) pro- 
files were considered to have been determined when the relative differences in 
the calculated values offz(1) between the ith and (i + 1)th iterations were less 

Another consideration arising in the numerical solution of the second and 
higher truncations is that of optimum imposition of the asymptotic infinity 
boundary conditions. The conditions as given by (20) and (21) can be replaced 
by others that have the two advantages of being attained with exponentially, 
rather than algebraically, decaying error, and of permitting integration through 
a reasonably small interval. These are based upon the asymptotic forms of the 
solutions. The asymptotic behaviour far from the body for the governing sets 
of ordinary differential equations can be found by constructing the perturbation 
solutions about the free stream. As would be expected, such an analysis indicates 
that the asymptotic forms of the desired solutions are the same as for the Oseen 
model. Fortunately, the Oseen model for this problem has been investigated 
by Van Dyke (1964~) .  He argued, and it was well confirmed by his numerical 
integrations, that for the Oseen model the following asymptotic forms are valid 
far from the body to within exponentially small terms: 
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where a, b, and c are unknown constants. With these asymptotic forms assumed 
valid for the present problem, it is then possible to form the alternative linearly 
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FIGURE 2. Drag coefficient vs. Reynolds number for second, third, fourth and fifth 
truncations. , Tritton's (1959) data. 

In the actual numerical solution, (29)-(32) were used as the infinity boundary 
conditions and were imposed at  some sufficiently large radius, roo. Experimenta- 
tion indicated that these conditions determined the required profiles to four 
significant figures when the numerical integration was carried to Rr, z 40. 

The requisite numerical computations for the current investigation were 
programmed in FORTRAN I V  (H level) and were performed on the IBM 
System 360/67 automatic digital computer of the Stanford Computation Center. 
The calculated wall values for thef, ( r )  profiles in the second, third, fourth, and 
fifth truncations are given by Underwood (1968). 
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Onset of separated $ow; drag and pressure coeBcients 

Experimental studies have indicated the existence of a critical value of the 
Reynolds number above which separated flow results, with its accompanying 
standing eddies a t  the rear of the cylinder. Since these vortices are perhaps the 
most readily observable flow-field characteristic when they exist, it is of great 
interest to verify their occurrence with the present theory and to determine 
accurately the value of the separation Reynolds number. A Taylor series expan- 
sion of the stream function near the surface of the body indicates that for the 
nth truncation the onset of separation occurs at the Reynolds number for 

(33) 

The left-hand side of (33) will be referred to as the 'separation parameter' for 
notational convenience. 

In  past studies of the low Reynolds number flow past a circular cylinder the 
drag coefficient has been the most closely examined flow parameter. The current 
semi-analytic approach, unlike full numerical solution, gives a simple expression 
for the calculation of drag. Manipulation of the governing equations shows that 
only the first term in the Fourier expansion of $(r,  0 )  contributes to the drag, 
and the drag coefficient C, is given by 

which n 
i( - l)"+'fi( 1) = 0. 

i= 1 

Similarly, combination of the governing equations reveals that the pressure 
coefficient C, for the nth truncation is 

where ps is the dimensional surface pressure at an angle 0 along the body, and 
p ,  is the free-stream pressure. The required integrations in (35) were performed 
numerically using values from the calculated profiles for the various truncations. 

3. Discussion of results 
Results of present study 

Figures 2 and 3 show the drag coefficient and separation parameter, respectively, 
plotted against Reynolds numbers ranging from 0.4 to 6.5 for the second, third, 
fourth and fifth truncations. The truncations constitute an alternating sequence, 
which appears to converge quite rapidly. The actual drag coefficient and separa- 
tion Reynolds number yielded by the present theory evidently lie between the 
values predicted by the fourth and fifth truncations. 
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It is clear that convergence of the sequence has not been obtained by the 
calculation of the first five truncations. Nonetheless, the information contained 
in these truncations makes it possible to extract accurate values by application 
of the non-linear Shanks’ transformation (Shanks 1955). If Sn-l, S,, and Sn+l 
are three successive approximations to a quantity, a revised value is given by 

\\ Shanks’(1955) extension 

4th truncation .l \ 

2 4 6 8 
R 

FIGURE 3. Separation parameter vs. Reynolds number for second, third, fourth and 
Mth truncations. 

Applying this transformation to the second, third, and fourth truncations and 
to the third, fourth, and fifth truncations gives values of the drag coefficient 
and the separation parameter which agree to three significant figures. These are 
plotted as the Shanks’ extension in figures 2 and 3. Examination of the figures 
suggests that fifth truncation values give a good approximation to the converged 
solutions represented by the Shanks’ extension. 
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Since algebraic complexity, and consequently computer run-time increase 
considerably with each successive truncation, it is desirable to  effect the most 
rapid convergence possible. The form of the expansion (12) for the dependent 
variable +(r, 8)  is important in determining convergence. Although the present 
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FIGURE 4. Drag coefficient ws. Reynolds number for first five truncations in powers 
of sin 0. 

expansion gives satisfactory convergence, improvements are undoubtedly 
possible. It is clear that the more closely f, ( T )  represents the actual solution, the 
more convergence is improved. In  addition, obtaining a first truncation that does 
not lead to Stokes' paradox seems desirable. To this end, Van Dyke ( 1 9 6 4 ~ )  
suggested substituting (12) for $(T,  8) into the Navier-Stokes equations, and 
then expanding the result in powers of sin 8. Equating like powers of sin 8 led 
to a truncation problem. Investigation of this idea shows, however, that the 
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resulting convergence is decidedly inferior to the convergence in the current 
variables. Figures 4 and 5 show the drag coefficient and separation parameter, 
respectively, for the first five truncations in powers of sin 8. The separation para- 
meter, in particular, converges extremely slowly in these variables. As the 
expansion in powers of sin8 is an expansion which is strictly valid only in the 
vicinity of the cylinder’s upstream stagnation point and separation occurs to the 
rear of the cylinder, this behaviour might be expected. 

5 

1 

At separation, SEP = 0 I 

/ 

5th truncation 

I I I 

0 2 4 6 8 
R 

FIGURE 5. Separation parameter v8. Reynolds number for first five truncations in 
powers of sin 8. 

Since the fifth truncation has been seen to approximate the converged solution 
adequately for the present problem, properties of the flow field about a circular 
cylinder can be found by further examination of fifth truncation results. Figure 6 
gives the pressure coefficient for representative Reynolds numbers between 0.4 
and 10.0. It is well known that for R < 1 the minimum pressure occurs at  the rear 
stagnation point, but as R increases the point of minimum pressure moves up- 
stream. This behaviour is noted in the present solution. 

Figures 7-10 show streamlines for the flow past a circular cylinder at Reynolds 
numbers of 0.4, 1.6, 6-4 and 10.0, respectively. At very low Reynolds numbers 
the flow past a circular cylinder displays fore-and-aft symmetry near the body, 
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but distinct asymmetry farther out. As R increases, however, the asymmetry 
becomes more pronounced and affects the flow near the body. Above the separa- 
tion Reynolds number, standing eddies form behind the cylinder, becoming 
more pronounced as R grows. 

.8 

6 

4 

2 

2 
0 

-2 

-4 

-6 

I I I I I 1 

0" 30" 60" 90" 120" 150" 180' 
e 

FIGURE 6. Pressure coefficient calculated from fifth truncation solutions for 
0.4 < R < 10.0. 

Comparison of results 
Where possible, results of the present study have been compared with results 
of previous investigations. Figure 11 presents a comparison of the variation of 
the drag coefficient predicted by the present theory with that from existing 
theoretical and numerical solutions and experimental data. The inadequacy of 
the matched asymptotic expansion solutions of Kaplun (1957) and Proudman & 
Pearson (1957) above R = 2 is evident, although the former's formulation of the 
drag coefficient is obviously preferable. Lamb's (191 1) approximate solution of 
the Oseen equations is adequate at low Reynolds numbers, but it too fails above 
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FIGURE 7. Streamlines calculated from fifth truncation for R = 0.4. 

FIGURE 8. Streamlines calculated from fifth truncation for R = 1.6. 
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FIGURE 9. Streamlines calculated from fifth truncation for R = 6.4. 

FIUTJRE 10. Streamlines calculated from fifth truncation for R = 10.0. 
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R = 2. The full Oseen solution approaches Tritton's (1959) experimental data for 
low Reynolds numbers; however, the agreement worsens as R increases. The 
present solution by the method of series truncation compares favourably with 
Tritton's data over the entire range of Reynolds numbers. The drag coefficient 
approaches the correct limit for R < 1 and does not diverge from the experimental 
data for R > 1 .  
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R 
FIGURE 11. Comparison of drag coefficient vs. Reynolds number from present theory with 
existing theoretical and numerical solutions and experimental data. , Tritton's (1959) 
data; -, Shanks' (1955) extension of present solution; , Keller & Takami (1966) 
(numerical). 

Accurate determination of the Reynolds number at which separation first 
occurs at the rear of the cylinder was one of the primary aims of the present study. 
As seen from figure 3, the present analysis indicates that the separation Reynolds 
number lies within the range 5.45 < R < 5.86. Using the Shanks' extension gives 
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R = 5-75 as a more refined estimate. This is consistent with the value R = 5 
found experimentally by Taneda ( 1956). 

The length of the standing eddy from the fifth truncation is compared in figure 
12 with previous experimental and numerical values. The eddy length is seen to 
vary in an approximately linear manner with R, and the slope corresponds to 
that of Taneda’s (1956) experimental data. The fact that the fifth truncation 

5 

4 

3 

Y 

2 

1 

5 10 15 20 25 30 35 40 
R 

FIGURE 12. Comparison of fXth truncation eddy length with other existing data. a ,  
Taneda (1956); 0 ,  Keller & Takami (1966); 0 ,  Thorn (1933); , Kawaguti (1953); 
A ,  Kewaguti & Jain (1965) ; -, present solution. 

values lie slightly below the experimental points should be expected, since it 
is apparent from figure 3 that the fifth truncation underestimates the extent of 
separated flow. 

As a further comparison, figure 13 shows the pressure distribution for R = 10.0 
calculated from the fifth truncation, from Keller & Takami’s (1966) full numerical 
solution, and from Kawaguti & Jain’s (1965) time-dependent numerical solution. 
Agreement is good, especially along the upstream portions of the circular cylinder. 
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4. Conclusions 
The viscous, incompressible flow at low Reynolds number past a circular 

cylinder provides a severe test of the method of series truncation. Not only is the 
governing equation highly elliptic, but the flow disturbances extend far from 
the body. Nevertheless, if the form of the expansion for the dependent variable 
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FIGVRE 13. Pressure coefficient for R = 10.0. - , flfth truncation; --- , Keller & 
Takami's (1966) numerical solution ; - - - , Kawaguti & Jain's (1965) numerical solution. 

is chosen carefully, satisfactory convergence is obtained with the method; and 
the flow characteristics can be determined accurately. 

Development of the present solution has suggested several general rules to 
observe in selecting a form for the expansion of the dependent variable. First, 
attempts should be made to select an expansion which is valid throughout the 
flow field. If, however, it becomes necessary to expand the series for the depen- 
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dent variable asymptotically to obtain a truncation problem, that asymptotic 
expansion should be postponed as long as possible in the analysis. 

Thus, for the present problem a Fourier expansion (12) for the stream function 
was chosen, since such an expansion is valid throughout the flow domain. In an 
attempt to rectify the primary deficiency of the resulting truncations (namely, 
an insoluble first truncation) Van Dyke (1  964 a )  proposed a further expansion in 
powers of sin 0. The Fourier series could be expanded in powers of sin 8 and then 
substituted into the Navier-Stokes equations, or the order of operations could 
be reversed. The operations are not commutative, and the latter sequence is 
preferable, since it preserves generality as long as possible and avoids asymptotic 
expansion until a later stage of the analysis. Convergence of successive trunca- 
tions, though, is markedly superior with the stream function expanded in a 
Fourier series alone, without further asymptotic expansions. In this manner, 
the greatest generality possible is maintained. 

Whereas numerical solutions of the Navier-Stokes equations require integra- 
tion of partial differential equations, the present semi-analytic computation 
possesses the distinct advantage of resulting in the numerical integration of a 
system of ordinary differential equations. The mathematical theory for treat- 
ment of ordinary differential equations is much more advanced than that for 
partial differential equations. For example, estimates of the error introduced by 
numerical integration are readily available for techniques dealing with ordinary 
differential equations, and the integration mesh is easily altered to keep error 
within arbitrary bounds. Again, questions of stability tend to be critical in 
numerical solution of partial differential equations. 

In the present investigation the method of series truncation is used to analyze 
the flow field about a circular cylinder for Reynolds numbers from order 10-1 to 
order 10, although the applicability of the method is by no means limited to this 
regime. Fifth truncation solutions are seen to give a very good approximation 
to the actual flow field, while a typical fifth truncation calculation necessitates 
on the order of 25 yo of the computer time required for the corresponding full 
numerical solution. Furthermore, present results bear semi-analytic representa- 
tion. 
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